
WANG’S THEOREM

KS

In this document I provide a complete and careful proof of Wang’s theorem, from [Wan58], theorem ??
below.

This theorem expresses the idea that invariant connections on a (homogeneous bundle over a) homogeneous
space (i.e. transitive group action) are determined by their value at a single point (like any invariant
function), as one can use the group action to move around to other points. The proof is not conceptually
difficult, but I wanted the details worked out somewhere. It turned out to be helpful in fleshing out the
picture of homogeneous bundles, and seeing unspoken details about the way connections are defined.

1. Homogeneous Spaces (and Bundles)

Let X be a manifold and fix a point x0 ∈ X. Let K be a Lie group which acts smoothly and transitively
on X on the left. Then X is called a homogeneous space, and if H is the stabilizer of x0, then in fact X
is (equivariantly) diffeomorphic to K/H, (see [Lee12, Thm 21.18], but this is not important to us now). A
different choice of x0 will change H to a conjugate subgroup.

Now let P be a K-homogeneous principal G-bundle over X, (i.e. such that the (left) K action lifts to an
action on P which commutes with the (right) G-action). Notice the group H acts on Px0

, the fiber over x0.
Let p0 be a point in this fiber. Since the G-action is free and transitive on Px0

, for each h ∈ H there is a
unique element λ(h) ∈ G such that

h.p0 = p0.λ(h) (1)
This defines the isotropy homomorphism.

λ = λp0 : H → G (2)

p0.λ(hh′) = (hh′).p0 = h.p0.λ(h′) = (p0.λ(h)).λ(h′) = p0.(λ(h)λ(h′)) (3)

A different choice of p0 will change λ to a G-conjugate.

2. Invariant connections

For Lie groups K,H, and G, let k, h, g denote their respective Lie algebras.

Theorem 2.1 (Wang’s theorem). Let P be a K-homogeneous principal G-bundle over a manifold X
with a transitive left K-action, so that X ∼= K/H is a homogeneous space, where H is the stabilizer of a
chosen point x0 ∈ X. Let p0 ∈ P be a point in the fiber over x0, and let λ : H → G denote the isotropy
homomorphism associated to p0.
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Then the K-invariant connections ω on P are in one to one correspondence with linear maps Λ : k→ g
such that

(1) Λ ◦Ad(h) = Ad(λ(h)) ◦ Λ, for all h ∈ H, and
(2) Λ|h = dλ.

The correspondence is given by, thinking of ω ∈ Ω1(P, g),

Λ(v) := ωp0(ṽ) (4)

where ṽ is the vector field induced by v ∈ k using the action of K on P .

The curvature of such a connection can be can be computed in terms of Λ as

Fp0(ṽ, w̃) = [Λ(v),Λ(w)]− Λ[v, w]. (5)

Remark. One can also say that Λ is an equivariant map between k and g as H-representations, which
also satisfies (2).

Remark. Note that (??) determines F completely at p0, since the map v 7→ π∗ṽ, which is the differential
of the action ofK onM , is surjective onto TxM by transitivity. This is all we need, since F is a horizontal
tensor.

Proof. Let ω be an invariant connection on P . We can define the linear map Λ by (??). For v ∈ h,

ωp0

(
d

dt

∣∣∣∣
t=0

exp(tv).p0

)
= ωp0

(
d

dt

∣∣∣∣
t=0

p0.λ(exp(tv))

)
= ωp0

(
d

dt

∣∣∣∣
t=0

p0. exp(tdλ(v))

)
= dλ(v)

where we used one defining property of a connection in the last step.
Now suppose v ∈ k and h ∈ H.

ωp0

(
Ãdh(v)

)
= ωp0

(
d

dt

∣∣∣∣
t=0

h exp(tv)h−1.p0

)
= ωp0

(
d

dt

∣∣∣∣
t=0

h exp(tv).p0.λ(h−1)

)
= ωp0

(
(Lh)∗(Rλ(h)−1)∗

d

dt

∣∣∣∣
t=0

exp(tv).p0

)
= (Lh)∗(Rλ(h)−1)∗ωp0

(
d

dt

∣∣∣∣
t=0

exp(tv).p0

)
= Adλ(h) ωp0

(
d

dt

∣∣∣∣
t=0

exp(tv).p0

)
= Adλ(h)(Λ(v))

where we used left K-invariance and right G-equivariance (the other defining property of a connection).
Thus Λ satisfies the two specified properties.

Conversely let Λ : k→ g be a linear map satisfying the above. We will first define a connection ω ∈ Ω1(P, g)
at p0.

Since K acts transitively on X, the combined (transitive) action of K×G on P , defined by (k, g).p = k.p.g−1,
induces a surjection

sp0 : k⊕ g→ Tp0P (6)

X ⊕ Y 7→ X̃ − Ỹ . (7)
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The kernel of this map is the tangent space to the (K ×G)-stabilizer of p0, which is given by

Ĥ = {(h, λ(h)) : h ∈ H}
which has tangent space

ĥ = {(Z ⊕ dλ(Z)) : Z ∈ h} ⊂ k⊕ g

Consider the map Λ− idg : k⊕ g→ g. By the second property of Λ, the kernel of this map contains ĥ, (for
Z ∈ h)

(Λ− idg) (Z ⊕ dλ(Z)) = Λ(Z)− dλ(Z) = 0, (8)
so it descends to a map Tp0P → g. We define ωp0 to be this map.

Remark. Explicitly, to evaluate ωp0(v), first find some (X,Y ) ∈ k ⊕ g such that v = X̃ − Ỹ , and then
the result is Λ(X)− Y . Notice we have minus signs just because we chose to use the map p0 7→ kp0g

−1

(which is a left action map) rather than say p0 7→ kp0g.

k⊕ g g

Tp0P

(9)

Now we want to extend to a connection ω everywhere on P by using (K × G)-equivariance. Note that we
want:

L∗kω = ω (10)
ωkp = L∗k−1ωp (11)

and

R∗gω = Adg−1 ω (12)
ωpg = Adg−1 R∗g−1ωp (13)
ωpg−1 = Adg R

∗
gωp (14)

So define
ωkp0g−1 := Adg ◦R∗g L∗k−1ωp0 (15)

To show ω is indeed a K-invariant connection, it remains to show the following: (We simplify some vector
notation, so that, for example if X ∈ k, we write X̃ := d

dt

∣∣
t=0

exp(tX).p0 as X.p0, and we write (Lk)∗X as
just kX.)

(1) ω is well defined.
If p = k1p0g

−1
1 = k2p0g

−1
2 ∈ P , then one can show that

h := k−11 k2 ∈ H (16)

and p0 g−11 g2 = k−11 k2 p0 implies that

λ(h) = g−11 g2. (17)

We will label the two possible definitions of ωp by ωi for i = 1, 2. So:

ωi := Adgi R
∗
gi L

∗
k−1
i

ωp0 . (18)

Let v ∈ TpP . Then k−1i vgi ∈ Tp0P , so there are Xi ∈ k and Yi ∈ g such that

k−1i vgi = sp0(Xi, Yi) = X̃i − Ỹi =: Xi.p0 − p0.Yi (19)
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We can see that (X1, Y1) and (X2, Y2) are related through

k1(X1.p0 − p0.Y1)g−11 = v = k2(X2.p0 − p0.Y2)g−12 (20)

=⇒ X1.p0 − p0.Y1 = k−11 k2(X2.p0 − p0.Y2)g−12 g1 (21)

= h(X2.p0 − p0.Y2)λ(h)−1 (22)

= hX2h
−1.p0 − p0.λ(h)Y2λ(h)−1 (23)

= Adh(X2).p0 − p0.Adλ(h)(Y2) (24)

We want to show that ω1(v) = ω2(v).

ω2(v) = Adg2 R
∗
g2 L

∗
k−1
2
ωp0(v) (25)

= Adg2 ωp0(k−12 vg2) (26)
= Adg2 ωp0(X2.p0 − p0.Y2) (27)
= Adg2 (Λ(X2)− Y2) (28)
= Adg1·λ(h) (Λ(X2)− Y2) (29)
= Adg1 Adλ(h) (Λ(X2)− Y2) (30)

= Adg1
[
Λ(Adh(X2))−Adλ(h)(Y2)

]
by equivariance of Λ (31)

= Adg1 ωp0
(
Adh(X2).p0 − p0.Adλ(h)(Y2)

)
(32)

= Adg1 ωp0 (X1.p0 − p0.Y1) (33)
= Adg1 R

∗
g1 L

∗
k−1
1
ωp0(v) (34)

= ω1(v) (35)

(2) Property 1 of connections, ω(Ỹ ) = Y for Y ∈ g.
At the point p0,

ωp0(Ỹ ) = ωp0(sp0(0,−Y )) (36)
= Λ(0)− (−Y ) (37)
= Y (38)

So this is already true at p0.
Let p = k.p0.g

−1 ∈ P and Y ∈ g. Then

ωp(p.Y ) = Adg R
∗
gL
∗
k−1ωp0(kp0g

−1Y ) (39)

= Adg ωp0(p0g
−1Y g) (40)

= Adg ωp0
(
p0 Adg−1(Y )

)
(41)

= Adg Adg−1(Y ) (42)
= Y (43)

(3) Property 2 of connections, G-equivariance, Adg R
∗
gω = ω.
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For p = k.p0.l
−1 ∈ P and g ∈ G,

Adg R
∗
gωp = Adg R

∗
g [AdlR

∗
l L
∗
k ωp0 ] (44)

= Adg AdlR
∗
g R
∗
l L
∗
k ωp0 (45)

= Adg Adl (Rl ◦Rg)∗ L∗k ωp0 (46)
= AdglR

∗
gl L
∗
k ωp0 (47)

= ωk.p0.(gl)−1 (48)
= ωpg−1 (49)

(4) K-invariance, L∗kω = ω.
For p = j.p0.g

−1 ∈ P and k ∈ K,

L∗kωp = L∗k
[
Adg R

∗
g L
∗
j ωp0

]
(50)

= Adg R
∗
g L
∗
k L
∗
j ωp0 (51)

= Adg R
∗
g L
∗
kj ωp0 (52)

= ωkj.p0.g−1 (53)
= ωkp (54)

Thus, ω defined above is a K-invariant connection on P .

Next we show that these two processes (ω ←→ Λ) invert each other.

(1) Let Λ : k → g be given, and define ω as above. Then for any X ∈ k, since sp0(X, 0) = X̃, it is clear
from the definition that ωp0(X̃) = ωp0(sp0(X, 0)) = Λ(X)− 0.

(2) Let ω be a given K-invariant connection, which defines Λ : k → g. Let ω′ be the connection form
defined above. By (K × G)-equivariance, ω must satisfy the formula defining ω′, so if ω = ω′ at a
single point, then they agree everywhere. Thus we look at the point p0.

Let v ∈ Tp0P satisfy v = sp0(X,Y ) = Xp0 − p0Y for some X ∈ k and Y ∈ g. Then ω′p0(v) =
Λ(X)− Y .

ω′p0(v) = Λ(X)− Y (55)
= ωp0(Xp0)− ωp0(p0Y ) (56)
= ωp0(Xp0 − p0Y ) (57)
= ωp0(v) (58)

Thus ω = ω′.

Finally we compute the curvature F of ω defined by Λ. Let v, w ∈ k. These induce vectors ṽp0 , w̃p0 at Tp0P .
We will need the values of vector fields extending ṽp0 , w̃p0 around p0 in the computation, so we choose the
vector fields ṽ, w̃ which are also induced by the K-action, (but in the end recall that F is tensorial and does
not depend on the choices of extensions).

Fp0(ṽp0 , w̃p0) = dω(ṽ, w̃) +
1

2
[ωp0 ∧ ωp0 ](ṽp0 , w̃p0) (59)

= dω(ṽ, w̃) + [ωp0(ṽp0), ωp0(w̃p0)] (60)

= ṽp0 · ω(w̃)− w̃p0 · ω(ṽ)− ωp0
(
[ṽ, w̃]p0

)
+ [Λ(v),Λ(w)] (61)
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Since K acts on the left, (Check:) [ṽ, w̃] = −[̃v, w], (as opposed to when a group acts on the right, in which
case we have a Lie algebra homomorphism).

Fp0(ṽp0 , w̃p0) =

[
Lṽ(ω)(w̃p0) + ωp0(Lṽ(w̃))

]
−
[
Lw̃(ω)(ṽp0) + ωp0(Lw̃(ṽ))

]
+ ωp0

(
[̃v, w]p0

)
+ [Λ(v),Λ(w)] (62)

Since ω is K-invariant,

(Lṽ ω)|p0 =
d

dt

∣∣∣∣
t=0

L∗exp(tv)ωexp(tv).p0 =
d

dt

∣∣∣∣
t=0

ωp0 = 0. (63)

Thus,

Fp0(ṽp0 , w̃p0) = ωp0([ṽ, w̃]p0)− ωp0([w̃, ṽ]p0) + ωp0
(
[̃v, w]p0

)
+ [Λ(v),Λ(w)] (64)

= −ωp0([̃v, w]p0)− ωp0([̃v, w]p0) + ωp0
(
[̃v, w]p0

)
+ [Λ(v),Λ(w)] (65)

= [Λ(v),Λ(w)]− ωp0([̃v, w]p0) (66)

= [Λ(v),Λ(w)]− Λ([v, w]) (67)

(Curvature should be the "same" everywhere by homogeneity.)
�
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